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a b s t r a c t

In this paper, we construct very efficient high-order schemes for general time-dependent advection–
diffusion problems, based on the first-order hyperbolic system method. Extending the previous work
on the second-order time-dependent hyperbolic advection–diffusion scheme (Mazaheri and Nishikawa,
NASA/TM-2014-218175, 2014), we construct third-, fourth-, and sixth-order accurate schemes by
modifying the source term discretization. In this paper, two techniques for the source term discretization
are proposed; (1) reformulation of the source terms with their divergence forms and (2) correction to the
trapezoidal rule for the source term discretization. We construct spatially third- and fourth-order
schemes from the former technique. These schemes require computations of the gradients and second-
derivatives of the source terms. From the latter technique, we construct spatially third-, fourth-, and
sixth-order schemes by using the gradients and second-derivatives for the source terms, except the
fourth-order scheme, which does not require the second derivatives of the source term and thus is even less
computationally expensive than the third-order schemes. We then construct high-order time-accurate
schemes by incorporating a high-order backward difference formula as a source term. These schemes
are very efficient in that high-order accuracy is achieved for both the solution and the gradient only
by the improved source term discretization. A very rapid Newton-type convergence is achieved by a com-
pact second-order Jacobian formulation. The numerical results are presented for both steady and time-
dependent linear and nonlinear advection–diffusion problems, demonstrating these powerful features.

Published by Elsevier Ltd.

1. Introduction

In this paper, we construct very efficient high-order schemes for
general time-dependent advection–diffusion problems, based on
the first-order hyperbolic system method [1,2]. In this method,
the diffusion term is reformulated as a hyperbolic system, leading
to the unification of advection and diffusion as a single hyperbolic
system [2]. The drastic change in the type of equations, parabolic to
hyperbolic, brings several dramatic improvements in the construc-
tion of numerical schemes: hyperbolic schemes for diffusion, the
same order of accuracy for the solution and the gradients,
orders-of-magnitude convergence acceleration, etc., which have
been demonstrated for steady diffusion and viscous problems in
Refs. [1–5] and unsteady advection–diffusion problems in Ref.
[6]. It is based on the reformulation of the governing equations,
and therefore applicable to any discretization method. In this work,

we consider a Residual-Distribution (RD) method [7], which has
been well developed for hyperbolic systems and has a superior fea-
ture of achieving second-order accuracy in a compact stencil.

In the previous work [6], we extended the hyperbolic method,
for the first time, to time-accurate computations by an implicit
time-integration method based on the second-order backward
difference formula. The resulting scheme was applied to various
time-dependent problems, demonstrating second-order accuracy
for the solution and the gradient achieved at all interior and
boundary nodes in uniform and nonuniform grids at every physical
time step, and rapid convergence for solving implicit-residual
equations by Newton’s method (i.e., less than 5 iterations per
physical time step), which is possible by the compactness of the
RD schemes. As a consequence of the first-order re-formulation
of the equation, the number of linear relaxations performed at
every Newton iteration was shown to increase only linearly with
the grid size, not quadratically as typical for diffusion problems.
The efficiency of the developed second-order schemes was demon-
strated for linear and nonlinear advection–diffusion problems on
highly refined grids, up to 30,000 nodes.

http://dx.doi.org/10.1016/j.compfluid.2014.06.020
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In this paper, we propose a very simple extension of the second-
order schemes to higher-order. We show that high-order spatial
accuracy can be achieved simply by modifying the source term
discretization. There are two approaches to the source term
discretization: (1) reformulation of the source terms with their
divergence forms and (2) correction to the trapezoidal rule for
the source term discretization. The former technique is based on
the divergence formulation of source terms proposed in Ref. [8]:
write the source term in the divergence form and discretize it in
the same way as the flux divergence term. The latter is based on
a high-order correction to the trapezoidal rule, and thus called here
the generalized trapezoidal rule. In either case, high-order accu-
racy is achieved by making low-order truncation error terms pro-
portional to the residual, which thus vanish in the steady state
and yield high-order accuracy. We solve the resulting implicit-
residual equations by an implicit solver based on the second-order
Jacobian matrix developed in the previous work [6]. As we will
show, the implicit solver is as powerful as Newton’s method; e.g.,
eight orders of magnitude reduction can be achieved in 10 itera-
tions. To enable time-accurate computations, we employ high-
order versions of the backward difference formulas (BDF), which
are incorporated as source terms, and solve the implicit-residual
equations by the implicit solver over each physical time step. In
this manner, the steady state is made equivalent to the next
physical time with all the benefits of the hyperbolic method
retained. We note that the choice of the implicit time stepping
method is independent of the developed high-order RD schemes,
and thus other methods such as implicit Runge–Kutta methods
or space-time methods can also be employed.

The high-order RD schemes developed in this work are signifi-
cantly different from other high-order RD schemes in that our
schemes are based on the first-order hyperbolic system formula-
tion of the advection–diffusion equation [2]. In this approach, the
loss of high-order accuracy in the intermediate Reynolds number,
as discussed in Refs. [9–11], cannot occur because the advective
and diffusive terms are fully integrated into a single hyperbolic
system. If the original advection–diffusion equation is discretized,
a high-order RD scheme needs to be developed for the diffusion
term (i.e., second derivative) and then carefully combined with
an advection scheme, e.g. by using a blending parameter as
described in Ref. [10], to avoid the loss of accuracy. Furthermore,
while high-order RD schemes based on high-order elements
require extra degrees of freedom for each variable, our schemes
are based on linear elements for any order of accuracy but require
extra gradient variable to be added to the solution vector. Note that
the number of extra variables in the high-order elements increase
for higher-order accuracy, but the number of extra variables
required in our approach is fixed and independent of the order of
accuracy. Our approach is somewhat similar to those in Refs.
[12–14], but again is significantly different by the use of first-order
hyperbolic system formulation of the advection–diffusion equation
and by the source term discretization techniques. It is emphasized
that our schemes require only the first and second derivatives of
the source term, or in some cases the first derivatives only; they
do not require the gradient computation for the solution variables.

The third-order schemes developed in this paper are similar to
the third-order finite-volume scheme of Katz and Sankaran [15,16]
in that the second-order truncation error is eliminated by making
it proportional to the residual and the upgrade is achieved by sec-
ond-order accurate gradients. However, as we demonstrate in this
paper, the proposed high-order RD schemes have several superior
features: (1) implicit solver can be constructed by the Jacobian
derived from a compact second-order RD scheme, (2) gradient
computations are required for the source terms only, and not for
the solution,( 3) stiffness due to the second derivative of the diffu-
sion term is completely eliminated, (4) higher-order schemes can

be constructed beyond third-order (in extending it to multi-
dimensions), and (5) the same order of accuracy is achieved for
the gradients, as well. In particular, the fourth-order scheme
constructed in Section 5 is remarkably more efficient because it
does not require second derivatives of the source term, which are
required in the schemes described in Refs. [15,16].

In this paper, we focus on one-dimensional linear and nonlinear
advection–diffusion problems. It certainly serves as a basis for the
development of high-order multi-dimensional RD schemes for
more complex equations. Yet, more importantly, the one-dimen-
sional high-order schemes developed in this paper could poten-
tially bring significant improvements to practical problems such
as material thermal response calculations of thermal protection
systems of atmospheric entry vehicles [17–19], and the experi-
mental aeroheating data reduction [20,21], which are based on
one-dimensional analyses and routinely used in industries (e.g.
NASA). The extension to higher dimensions is beyond the scope
of the paper; it will be addressed in a subsequent paper.

The paper is organized as follows. In the next section, the time-
dependent hyperbolic advection–diffusion system is described. In
Section 3, a compact second-order residual-distribution scheme,
a steady solver, and the second-order discretization are discussed.
In Section 4, the third- and fourth-order RD schemes with source
term reformulation are proposed. In Section 5, the third-, fourth,
and sixth-order RD schemes with source term discretization are
developed and proposed. Numerical results are then presented in
Section 6. Finally, Section 7 concludes the study with remarks.

2. Time-dependent hyperbolic advection–diffusion system

We start with a linear advection–diffusion equation to simplify
the discussion. We will extend the discussion later to a more gen-
eral nonlinear advection–diffusion equation.

Consider the one-dimensional (1-D) time-dependent advec-
tion–diffusion equation:

@tuþ a@xu ¼ m@xxuþ eSðxÞ; ð1Þ

where a and m are both taken to be positive constant, and eS is the
source term. We will follow the procedure we described in Ref.
[6] and rewrite the above equation as a first-order hyperbolic
advection–diffusion system:

@su ¼ �a@xuþ m@xp� a
Dt

uþ SðxÞ; ð2Þ

@sp ¼ ð@xu� pÞ=Tr ; ð3Þ

where the relaxation time, Tr > 0, is arbitrary and defined as
described in Ref. [6], and S includes any existing source terms from
the advection–diffusion problem, eS, as well as any additional terms
that arise from the implicit time-stepping scheme, Dt is the physical
time steps, and s is the pseudo time step. Note that the @tp is taken
as pseudo time derivative, @sp.

The variable a depends on the order of the Backward-Differenc-
ing-Formula (BDF): 1 for the 1st-order (BDF1), 3=2 for the second-
order (BDF2), 11=6 for the third-order (BDF3), 25=12 for the fourth-
order, and 147=60 for the sixth-order time discretizations (see
Table 1). The remaining terms in the BDF are stored in the source
term function SðxÞ. It is well known that the BDF2 is A-stable and
higher-order BDFs are not. Therefore, the second-order scheme is
unconditionally stable, but higher-order BDFs are conditionally
stable. Consequently, the stability of the higher-order schemes
depends on the spatial discretization. Estimates for the maxi-
mum-allowable CFL numbers are given in Appendix A for a set of
representative high-order schemes developed in this paper.

Towards the pseudo steady state, the variable p approaches the
solution gradient and hence the above equation becomes identical
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to the original advection–diffusion equation with the time deriva-
tive discretized by the BDF, i.e., a consistent discretization of the
original equation. The system reduces, of course, to the original
steady equation also in the physical steady state when @tu ¼ 0.
Second-order accurate unsteady computations have been
demonstrated based on the above formulation in Ref. [6].

In the vector form, our time-dependent first-order advection–
diffusion system can be written as

@U
@s
þ A

@U
@x
¼ S; ð4Þ

where

U ¼
u

p

� �
; A ¼

a �m
�1=Tr 0

� �
; S ¼

�au=Dt þ SðxÞ
�p=Tr

� �
: ð5Þ

For any positive Tr , the Jacobian has the following two real
eigenvales:

k1 ¼
a
2

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

a2Tr

s" #
; k2 ¼

a
2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

a2Tr

s" #
; ð6Þ

with linearly independent eigenvectors [6], and therefore the above
system is hyperbolic in the pseudo time. The hyperbolicity serves
mainly as a guide for discretization: various discretization tech-
niques are available for hyperbolic systems, e.g., upwinding. In
addition to the convenience in discretization, the major benefits
are: (1) the hyperbolic discretization results in a strong coupling
between the two variables that results in the equal order of accu-
racy for both u and p ¼ @xu on arbitrary grids and (2) Oð1=hÞ accel-
eration is achieved in iterative convergence for the linearized
residual equation in implicit solvers due to the Oð1=hÞ condition
number of the Jacobian, which is OðhÞ smaller than that of the Jaco-
bian derived from a conventional diffusion scheme. For explicit
schemes, the Oð1=hÞ acceleration is achieved by the OðhÞ time step
typical in methods for hyperbolic systems, which is Oð1=hÞ times
larger than a typical time step of Oðh2Þ for diffusion. The Oð1=hÞ
acceleration in convergence has been demonstrated over traditional
methods for the diffusion equation [1,4], for the advection–diffusion
equation [2,5], for the compressible Navier–Stokes equations [3],
and most recently for time-dependent linear and nonlinear advec-
tion–diffusion problems using RD technique [6].

In the next sections, we first briefly describe the second-order
time-dependent discretization process using the RD scheme. Fur-
ther details are given in Ref. [6]. We then extend the order of accu-
racy of the scheme to third-order and fourth-order RD hyperbolic
advection–diffusion schemes with reformulation of the hyperbolic
system, and finally to higher order (fourth- and sixth-order) RD
hyperbolic advection–diffusion schemes with introduction of
new source term discretization technique.

3. Second-order RD hyperbolic advection–diffusion

The RD method requires (1) evaluation of the cell (or element)
residuals and (2) the distribution of the residuals to the nodes

bounding the cell. Consider a one-dimensional domain discretized
with N nodes that are distributed arbitrary over the domain of
interest with the solution, u, and the solution gradient, p ¼ @xu,
data stored at the nodes denoted by xi; i ¼ 1;2;3; . . . ;N (Fig. 1).
We define the cell-residual UC by integrating the spatial part of
Eq. (4) over the cell, C, defined by the nodes i and iþ 1:

UC ¼
Z xiþ1

xi

ð�AUx þ SÞdx; ð7Þ

¼
�aðuiþ1 � uiÞ þ mðpiþ1 � piÞ
1
Tr

uiþ1 � uiÞ½ �

(
þ
Z xiþ1

xi

Sdx: ð8Þ

The first term of Eq. (8) is the result of the exact integration of
�AUx over the cell C. The integration of the second term is not
exact and therefore is the source of the overall discretization error.
We will further discuss this discretization error in the following
sections.

We construct the spatial discretization of Eq. (4) by distributing
the cell residuals to the nodes:

dUi

ds
¼ 1

hi
ðBþUL þ B�URÞ; ð9Þ

where UL and UR denote the cell-residuals over the left and right
cells of the node i, respectively, and hi is the dual volume (see
Fig. 1) defined by

hi ¼
hL þ hR

2
; hL ¼ xi � xi�1; hR ¼ xiþ1 � xi: ð10Þ

Note that the pseudo time derivative on the left hand side is
retained here just for the sake of illustration. It will be ignored in
the implicit formulation that follows. Our aim is to directly solve
it for the pseudo steady state, which corresponds to the next phys-
ical time. In this sense, our method is not a dual-time stepping
method. The distribution matrices B� and Bþ (Fig. 2) typically do
not affect the order of accuracy of the discretization scheme; it is
determined by the cell-residuals [22,23], and therefore our focus
will be on the residual evaluation. (Refer to Ref. [6] for formulation
of the distribution matrices B� and Bþ).

3.1. Second-order discretization

We may use a simple trapezoidal rule for the integration of the
source term S over the cell C and arrive at the following cell
residuals:

UC ¼
�aðuiþ1 � uiÞ þ mðpiþ1 � piÞ � ðxiþ1 � xiÞ a

Dt ðuiþ1 þ uiÞ=2
ðuiþ1 � ui � ðxiþ1 � xiÞðpiþ1 þ piÞ=2Þ=Tr

� �kþ1

þ
ðxiþ1 � xiÞð~siþ1 þ ~siÞ=2

0

� �n�1;n

;

ð11Þ

where k and n are the Newton iteration counter (as described
below) and the physical time index, respectively. Note that the

Table 1
BDF coefficients.

BDF order unþ1 un un�1 un�2 un�3 un�4 un�5

1 1 �1
2 3

2
�2 1

2

3 11
6

�3 3
2 � 1

3

4 25
12

�4 3 � 4
3

1
4

5 137
60

�5 5 � 10
3

5
4 � 1

5

6 147
60

�6 15
2 � 20

3
15
4 � 6

5
1
6

Fig. 1. Schematic of grid spacing for a 1-D grid.

Fig. 2. Residual distribution to the nodes.
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second term of Eq. (11), which is computed at the two previous
physical time steps, is constant during the Newton iteration, and
thus will not contribute to the Jacobian.

The implicit formulation is defined by

Ukþ1 ¼ Uk þ DUk; ð12Þ

where U ¼ ðu1;p1;u2;p2; . . . ;uN;pNÞ and k is the iteration counter.
The correction DUk ¼ Ukþ1 � Uk is determined as the solution to
the linear system:

@Res
@U

DUk ¼ �Resk; ð13Þ

where Resk is the right hand side of Eq. (9), which is the unsteady
residual vector evaluated by Uk. Note that the pseudo time
derivative has been ignored. The Jacobian matrix is sparse, having
three 2� 2 blocks in each row for all interior nodes and two blocks
for boundary nodes. The ith pair of rows of the linear system is
given by

Ji�1DUk
i�1 þ JiDUk

i þ Jiþ1DUk
iþ1 ¼ �

1
hi
ðBþUL þ B�URÞk; ð14Þ

where DUk
i�1¼ðDuk

i�1;Dpk
i�1Þ, DUk

i ¼ðDuk
i ; Dpk

i Þ, DUk
iþ1¼ðDuk

iþ1;Dpk
iþ1Þ,

Ji�1 ¼
1
hi

@ðBþULÞ
@Ui�1

; ð15Þ

Ji ¼
1
hi

@ðBþULÞ
@Ui

þ ð@B�URÞ
@Ui

 !
; ð16Þ

Jiþ1 ¼
1
hi

@ðB�URÞ
@Uiþ1

: ð17Þ

We note that the derivative of the distribution matrices, B� and Bþ,
are zero for linear advection–diffusion problems and for nonlinear
problems with constant a=m values, which, for simplicity, are the
only nonlinear system considered in this paper. However, the
proposed schemes are applicable to general nonlinear advection–
diffusion problems.

The residual Jacobians needed in the Newton solver are exactly
in the same form as the above equations, but the derivatives of the
cell-residuals now include the contribution from the physical time
derivative:

@UR

@Ui
¼

a� hR
a

2Dt �m

� 1
Tr � hR

2Tr

" #
; ð18Þ

@UL

@Ui
¼
�a� hL

a
2Dt m

1
Tr � hL

2Tr

" #
: ð19Þ

At each physical time level n, we solve the pseudo steady problem
by Newton’s method with the current solution at n as the initial
solution. This results in second-order discretization, which was
demonstrated with several examples (linear and nonlinear) in Ref.
[6].

We now focus on the truncation error of the source term dis-
cretization as it is needed for our discussion in the next sections
where we show two different approaches to obtain higher-order
RD schemes. We demonstrate the truncation error of the system
by considering the residual of the second equation in our hyper-
bolic advection–diffusion system:

UC
p ¼ ðuiþ1 � ui � hðpiþ1 þ piÞ=2Þ=Tr; ð20Þ

where h is the width of the cell C (i.e. xiþ1 � xi). We now expand the
UC

p around the node i to obtain the truncation error (T:E.) for the sec-
ond equation, @sp, which after some algebra and rearrangements
becomes:

T:E:ð@spÞ ¼ ð@xui � piÞ þ
h
2
ð@xxui � @xpiÞ

�
þh2

6
ð@xxxui �

6
4
@xxpiÞ þ Oðh3Þ

#,
Tr ¼ Oðh2Þ; ð21Þ

where the first two terms will simply vanish as they satisfy the ori-
ginal equation in the pseudo steady state. The non-vanishing last
term makes the current discretization second-order. The same
results are obtained with the first equation and therefore is not
repeated here. The above analysis shows that the error arises from
the source term discretization, not from the flux balance term,
which is exact in one dimension. It implies that we can achieve
high-order accuracy only by improving the source term discretiza-
tion. In fact, in Ref. [14], a fourth-order finite-difference scheme is
constructed in this manner, i.e., by a high-order source term discret-
ization with explicit pseudo-time stepping targeted for steady
problems.

Note that the above truncation error analysis is based on the
cell-residual expanded at a node. Hence, the nodal residual has
the same order as the cell-residuals because it is constructed as a
weighted sum of the cell-residuals as shown in Eq. (9). Note also
that the truncation error analysis based on the cell-residual is local
to the cell and thus valid for any size of the cell, i.e., valid for uni-
form and nonuniform grids. In the rest of the paper, the truncation
error analysis is all based on the cell-residual.

In the next sections, we show two different techniques that will
lead to higher-order schemes. In particular, we discuss on (1) refor-
mulation of the source term with its divergence form and (2) new
source term discretization technique which acts as a correction to
the trapezoidal rule.

4. High-order RD scheme with source term reformulation
(third- and fourth-order)

Consider the source term, S, as the divergence of a function
f S : f S

x ¼ S. We now replace the source terms with their divergence
forms, and rewrite our first-order hyperbolic advection–diffusion
equation as

@su ¼ �a@xuþ m@xpþ @xf S
u ; ð22Þ

@sp ¼ ð@xu� @xf S
p Þ=Tr ; ð23Þ

where f S
u and f S

p are the divergence formulation of the source terms
in the u and the p equations, respectively. With the above reformu-
lation of the advection–diffusion equation, which will be discussed
in more details, the residual evaluations of the system becomes
exact with no special discretization scheme:

eUC ¼
Z xiþ1

xi

ð�AUx þ fS
xÞdx; ð24Þ

¼
�aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ ðf S

u Þiþ1 � ðf S
u Þi

1
Tr

uiþ1 � ui � ðf S
p Þiþ1

þ ðf S
p ÞiÞ

h i
8<: : ð25Þ

We remark that even though the residual evaluation of our refor-
mulated advection–diffusion system is exact, the overall accuracy
of the scheme depends on the accuracy of the divergence formula-
tion of the source terms and how it is formulated.

4.1. Third-order scheme with divergence form

Following the divergence formulation introduced in [8], we
write the source flux in a more general form:
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f S ¼
Xm�3

n¼1

ð�1Þn�1

n!
ðx� xiÞn@xn�1 S; ð26Þ

¼ ðx� xiÞS�
1
2
ðx� xiÞ2@xSþ 1

6
ðx� xiÞ3@xxS

� 1
24
ðx� xiÞ4@xxxSþ � � � ; ð27Þ

where the source term S and its derivatives Sx; Sxx, etc. are not
constants but functions that vary in space. We remark that the
source flux, f S, is not necessarily a polynomial of order m because
it depends on the derivatives of the source term S. In this paper,
we do not consider high-order schemes that require evaluation of
third or higher derivatives. The divergence of the source flux, @xf S,
for the third-order accuracy (i.e. m ¼ 3) is

@xf S ¼ Sþ h3

6
@xxxS ¼ Sþ Oðh3Þ; ð28Þ

which is identical to the original equation up to the third-order. We
remark that this error does not necessarily limit the maximum
order attained by numerical schemes. In the next section, we will
show that a fourth-order scheme can be constructed by a slightly
modified divergence form with m ¼ 3.

Discretization of the reformulated hyperbolic system leads to
the cell residual, for example, for the second equation as

UC
p ¼ uiþ1 � ui � ðf S

p Þiþ1
þ ðf S

p Þi
h i.

Tr; ð29Þ

where special care must be taken when we evaluate f S
i and f S

iþ1

(because of the presence of xi in the divergence formulation) as they
depend on whether the cell residual is being distributed to the left
or to the right node of the cell (Fig. 3):

UCi
p

 �
¼ uiþ1 � ui � ðf S

p Þiþ1
þ ðf S

p Þi
h i.

Tr;

¼ uiþ1 � ui � hRSiþ1 þ
h2

R

2
@xSiþ1 �

h3
R

6
@xxSiþ1

" #,
Tr ; ð30Þ

UCi
p

�!
¼ uiþ1 � ui � ðf S

p Þiþ1
þ ðf S

p Þi
h i.

Tr;

¼ uiþ1 � ui þ hRSi þ
h2

R

2
@xSi þ

h3
R

6
@xxSi

" #,
Tr : ð31Þ

The source term discretization is, therefore, not conservative, which
is natural and appropriate because the source term does not have a
conservative property and should not be discretized in such a way.
If it is conservative, the global sum of the cell-residual for the source
term will depend only on the boundary data (telescoping property),
which is wrong for the source term.

We now show that the truncation error (T:E.) of the resulting RD
scheme with the above divergence formulation of the source term
(with m ¼ 3) is in fact third-order. Again, for demonstration
purposes we consider the second equation (i.e. @sp); the same pro-
cess can be repeated for the first equation. We first expand the
source fluxes around the node i:Z xiþ1

xi

@xf Sdx ¼ f S
iþ1 � f S

i ¼ hR@xf S þ h2
R

2
@xxf S þ h3

R

6
@xxxf S þ Oðh4Þ;

ð32Þ

where the @xf S is given by Eq. (28), and

@xxf S ¼ @xSþ h2
R

2
@xxxSþ h3

R

6
@ð4Þx Sþ Oðh4Þ; ð33Þ

@xxxf S ¼ @xxSþ hR@xxxSþ h2
R@
ð4Þ
x Sþ h3

R

6
@ð5Þx Sþ Oðh4Þ: ð34Þ

Using Eq. (29), we evaluate the truncation error of the equation @sp
by substituting Eqs. (33) and (34) into Eq. (32) and expanding all the
terms in Eq. (29) around the node i:

T:E:ð@spÞ ¼ ð@xui � piÞ þ
hR

2
ð@xxui � @xpiÞ þ

h2
R

6
ð@xxxui � @xxpiÞ

" #
=Tr

þ h3
R

24
ð@ð4Þx ui � 14@xxxpiÞ þ Oðh4Þ

" #
=Tr

¼ 0þ Oðh3Þ;
ð35Þ

where the first three terms vanish as they satisfy our original
equation. The presence of the last term confirms that the proposed
divergence formula with m ¼ 3 makes our scheme third-order
accurate. The same result is obtained for the first equation with
the divergence formulation of the corresponding source terms,
and therefore the process is not repeated here.

We remark that the cost of this new third-order accurate RD
hyperbolic advection–diffusion scheme using the divergence
formulation of the source terms is only the evaluation of the first
and second derivatives of the source terms; i.e., @xS and @xxS. Note
that the source flux is third-order accurate (see Eq. (28)). Thus,
according to Eqs. (30) and (31), we need second-order and first-
order accurate discretization for @xS and @xxS, respectively. We
derive these discretization by fitting a quadratic function through
the node i and its two neighbors i� 1 and iþ 1 to arrive (after some
algebra) at the following formulas that are applicable to the inter-
nal nodes of general arbitrary grids (uniform and nonuniform):

@xSi ¼
�h2

RSi�1 þ ðh2
R � h2

L ÞSi þ h2
L Siþ1

hRhLðhR þ hLÞ
þ Oðh2Þ; ð36Þ

@xxSi ¼
hRSi�1 � ðhR þ hLÞSi þ hLSiþ1

hRhLðhR þ hLÞ=2
þ OðhÞ; ð37Þ

where hR and hL are defined in Eq. (10). The corresponding one-
sided formulas for the boundary nodes of general arbitrary grids are

@xS1 ¼
�hL� ðhL� þ 2hRÞS1 þ ðhR þ hL� Þ2S2 � h2

RS3

hRhL� ðhR þ hL� Þ
þ Oðh2Þ; ð38Þ

@xSN ¼
hLðhL þ 2hR� ÞSN � ðhR� þ hLÞ2SN�1 þ h2

R�SN�2

hR�hLðhR� þ hLÞ
þ Oðh2Þ; ð39Þ

@xxS1 ¼
hL�S1 � ðhR þ hL� ÞS2 þ hRS3

hRhL� ðhR þ hL� Þ=2
þ OðhÞ; ð40Þ

@xxSN ¼
�hR�SN þ ðhR� þ hLÞSN�1 � hLSN�2

hR�hLðhR� þ hLÞ=2
þ OðhÞ; ð41Þ

where hL� and hR� are defined as

hL� ¼ x3 � x2; hR� ¼ xN�1 � xN�2: ð42Þ

It is clear from the above formulas that each derivative can be
computed in a three-point stencil. Consequently, the residual at a
node is defined in a five-point stencil in the interior, a four-point
stencil at the nodes adjacent to the boundary, and a three-point
stencil at the boundary nodes. In the next section, we demonstrate
that a fourth-order scheme can be constructed without extending
the stencil.Fig. 3. Cell residual evaluation with divergence form of the source term.
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4.2. Fourth-order scheme with divergence form

Here, we show how a simple modification to the presented
divergence form upgrades the scheme order by one order; that is
our third-order scheme becomes fourth-order with no additional
cost. To gain an order, we propose the divergence form of the
source terms with

f S ¼
Xm�3

n¼1

ð�1Þn�1

n!
ðx� �xÞn@xn�1 S; ð43Þ

¼ ðx� �xÞS� 1
2
ðx� �xÞ2@xSþ 1

6
ðx� �xÞ3@xxS� 1

24
ðx� �xÞ4@xxxSþ . . . ;

ð44Þ

where �x ¼ ðxi þ xiþ1Þ=2. Note that the previous divergence form was
formed around the xi while this new formulation defines the diver-
gence function around the mid-point �x. Similar to the divergence
form presented in the previous section, the source term and its
derivatives are not constants but functions that vary in space. And
therefore, when the source flux is differentiated it recovers the ori-
ginal source term up to OðhmÞ around the node i. For m ¼ 3, we have:

@xf S ¼ Sþ ðx�
�xÞ3

6
@xxxS ¼ Sþ Oðh3Þ: ð45Þ

Again, it does not limit the maximum order of accuracy for numer-
ical schemes, and it is possible to construct even higher-order
schemes.

We now show that this third-order source divergence formula-
tion will result in a fourth-order accurate RD scheme. We do this
similarly to the process explained in the previous section except
that the second and third derivatives of the f S are now defined as:

@xxf S ¼ @xSþ ðx�
�xÞ2

2
@xxxSþ ðx�

�xÞ3

6
@ð4Þx Sþ Oðh4Þ; ð46Þ

@xxxf S ¼ @xxSþ ðx� �xÞ@xxxSþ ðx� �xÞ2@ð4Þx Sþ ðx�
�xÞ3

6
@ð5Þx Sþ Oðh4Þ:

ð47Þ

Again, for discussion purposes, we consider the second equation of
the hyperbolic advection–diffusion system, @sp. The truncation
error of the p equation after substituting Eqs. (46) and (47) into
Eq. (32) becomes:

T:E:ð@spÞ¼ ð@xui�piÞþ
hR

2
ð@xxui�@xpiÞþ

h2
R

6
ð@xxxui�@xxpiÞ

" #,
Tr

þ h3
R

24
ð@ð4Þx ui�@xxxpiÞþ

h4
R

120
ð@ð5Þx ui�

5
4
@ð4Þx piÞþOðh5Þ

" #
=Tr

¼0þOðh4Þ;
ð48Þ

which is fourth-order accurate because of the cancellation of the
first four terms of the truncation error equation. Another great
property of this new divergence formulation is the equal evaluation
of the f S

iþ1 � f S
i regardless of whether the source flux is being

transferred to the node i or iþ 1. This greatly simplifies the
implementation of this form of divergence formulation.

Note that the identical residual is distributed to the left and
right nodes in this scheme. It then appears that the source term
discretization is conservative. However, it is actually not conserva-
tive for the source term because the cell-residual for the source
term depends on the coordinate of the mid-point of the cell and
thus it is not telescoping. Again, this is natural and appropriate
for the source term, which has no conservation property and
should be local.

5. Higher-order RD scheme with generalized trapezoidal rule
(third-, fourth- and sixth-order)

In the previous section, we reformulated the original hyperbolic
advection–diffusion system with a generalized divergence form of
the source terms and arrived at third- and fourth-order RD
schemes. We specifically showed that both the third- and the
fourth-order RD schemes developed with the divergence
formulation of the source terms require the evaluation of the first
and second derivatives of the source terms. Fifth- and higher-order
schemes can be systematically constructed with the divergence for-
mulation, but may require the evaluation of third- and higher-order
derivatives that would extend the stencil to the neighbors of the
neighbors and beyond. From a practical point of view, such high-
order schemes are not very attractive, and thus not considered here.

In this section, we introduce a different technique to develop
even higher-order schemes without the need to evaluate gradients
beyond the second-derivatives. We also show that with this new
technique the fourth-order RD scheme is even less computation-
ally intensive than the third- and fourth-order RD schemes that
are developed with the divergence formulation of the source
terms.

Consider the vector form of our first-order hyperbolic advec-
tion–diffusion system:

@U
@s
þ A

@U
@x
¼ S: ð49Þ

We showed in Section 3 that the source term discretization with the
trapezoidal rule provides a second-order accurate scheme. This
trapezoidal rule can be written asZ iþ1

i
Sdx ¼ hR

2
ðSL þ SRÞ; ð50Þ

where for the second-order scheme SL ¼ Si and SR ¼ Siþ1; i.e., the
arithmetic averaging of the source terms between the left and the
right nodes (Fig. 4). Generalizing the trapezoidal rule, we propose
the following formula for the left and right source terms, SL and
SR respectively:

SL ¼ Si þ CL
1@xSi þ CL

2@xxSi; ð51Þ
SR ¼ Siþ1 þ CR

1@xSiþ1 þ CR
2@xxSiþ1; ð52Þ

where CL
1 and CR

1 are constants of OðhÞ, and CL
2 and CR

2 are of Oðh2Þ. A
somewhat similar approach is taken in Ref. [15], introduced for
upgrading the order of accuracy of a finite-volume scheme, where
not only the source term but also the interface flux need to be mod-
ified for high-order accuracy. We find these constants by making
sure that the nodal residuals of the two equations in our hyperbolic
system are accurate up to the desired order of accuracy of the
scheme we are seeking to develop. With the above equation, the
maximum possible order of accuracy is six. We also note that the
fifth-order RD scheme with the above proposed source term dis-
cretization becomes mathematically sixth-order.

5.1. Third-order RD scheme with generalized trapezoidal rule

A third-order RD scheme can be obtained if the coefficients of
the proposed discretization formulation satisfy the following
equations:

Fig. 4. Source term discretization.
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CL
1 þ CR

1 ¼ 0; CR
1hR þ CL

2 þ CR
2 ¼ �

h2
R

6
; CR

1hR þ 2CR
2–� h2

R

6
; ð53Þ

which can be derived from the truncation error analysis. Here, there
are four unknowns for three equations; thus there are infinite com-
binations with the CR

1 as a free parameter. We also note that there is
no relation between this third-order RD scheme and the third-order
scheme developed with the divergence formulation; the nodal
residual of the source terms obtained with the previous third-order
scheme depends only on the information from its immediate node
neighbor and not the node itself. On the other hand, the new
third-order RD scheme that is developed with a correction to the
trapezoidal rule depends both on its immediate node neighbor
and the node itself. Consequently, it is not possible to reproduce
the previous third-order scheme by any choice of the coefficients.
Note, however, that this scheme has the same stencil with the
previous third-order scheme: a five-point stencil in the interior, a
four-point stencil at the nodes adjacent to the boundary, and a
three-point stencil at the boundary nodes. The same is true for
the fourth-order scheme derived in the next section.

Assuming CR
1 ¼ �hR=6, the left and right source functions of the

source discretization may be chosen as:

SL ¼ Si þ
hR

6
@xSi;þ

h2
R

1000
@xxSi; ð54Þ

SR ¼ Siþ1 �
hR

6
@xSiþ1 �

h2
R

1000
@xxSiþ1: ð55Þ

We can now evaluate the truncation error of the hyperbolic advec-
tion–diffusion system. Here we show the truncation error of the
second equation; the same will be true for the first equation as well.
The cell residual of the second equation with the third-order RD
scheme with the generalized trapezoidal rule is:

UC
u ¼ �aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ

hR

2
ðSL þ SRÞ;

¼ �aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ
hR

2
ðSiþ1 þ SiÞ

� h2
R

12
ð@xSiþ1 � @xSiÞ �

h3
R

2000
ð@xxSiþ1 � @xxSiÞ: ð56Þ

We then expand the cell residual around the node i to arrive at the
following truncation error:

T:E:ð@suiÞ ¼ ð�a@xui þ m@xpi þ SiÞ þ
hR

2
ð�a@xxui þ m@xxpi þ @xSiÞ

þ h2
R

6
ð�a@xxxui þ m@xxxpi þ @xxSiÞ

þ h3
R

24
ð�a@ð4Þx ui þ m@ð4Þx pi þ 0:988@xxxSiÞ

þ Oðh4Þ ¼ 0þ Oðh3Þ; ð57Þ

where the first three terms vanish but the last term makes the
scheme third-order accurate. As we will show next, smaller values
for the coefficients CR

2 or CL
2 move the schemes to fourth-order accu-

rate. This is further shown in the following section.

5.2. Fourth-order RD scheme with generalized trapezoidal rule

Fourth-order accuracy is achievable by a simple adjustment to
the condition given in Eq. (53):

CL
1 þ CR

1 ¼ 0; CR
1hR þ CL

2 þ CR
2 ¼ �

h2
R

6
;

CR
1

2
hR þ CR

2 ¼ �
h2

R

12
: ð58Þ

Again, the coefficients cannot be determined uniquely, and there
are many solutions. A particularly interesting solution is the
following:

CL
1 ¼ þ

hR

6
; CL

2 ¼ 0; CR
1 ¼ �

hR

6
; CR

2 ¼ 0: ð59Þ

As will be shown shortly, it leads to a fourth-order RD scheme with
the source term discretization by Eqs. (51) and (52):

SL ¼ Si þ
hR

6
@xSi; ð60Þ

SR ¼ Siþ1 �
hR

6
@xSiþ1; ð61Þ

It is remarkable that the fourth-order scheme does not require the
evaluation of the second derivatives and is thus less expensive than
the third-order schemes developed in the previous sections. It is, of
course, possible to develop a fourth-order RD scheme with addition
of the second derivatives in the source term discretization. For
example the following constants will also result in a fourth-order
RD scheme:

CL
1 ¼ þ

hR

4
; CL

2 ¼ þ
hR

24
CR

1 ¼ �
hR

4
; CR

2 ¼ þ
hR

24
; ð62Þ

which makes this fourth-order RD scheme identical to the fourth-
order RD scheme constructed by the divergence formulation in Sec-
tion 4.2. Although it is possible to construct, these fourth-order
schemes are not very attractive as they require second derivatives
of the source term, and therefore not considered in this paper.

We now prove the fourth-order accuracy of the scheme by eval-
uating the cell residual of, for example, the first equation; i.e. UC

u:

UC
u ¼ �aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ

hR

2
ðSL þ SRÞ;

¼ �aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ
hR

2
ðSiþ1 þ SiÞ �

h2
R

12
ð@xSiþ1 � @xSiÞ:

ð63Þ

Expanding the cell residual around the node i, we obtain the trun-
cation error of the first equation (after some algebra) as

T:E:ð@suiÞ ¼ ð�a@xui þ m@xpi þ SiÞ þ
hR

2
ð�a@xxui þ m@xxpi þ @xSiÞ

þ h2
R

6
ð�a@xxxui þ m@xxxpi þ @xxSiÞ

þ h3
R

24
ð�a@ð4Þx ui þ m@ð4Þx pi þ @xxxSiÞ

þ h4
R

120
ð�a@ð5Þx ui þ m@ð5Þx pi þ

5
6
@ð4Þx SiÞ

þ Oðh5Þ ¼ 0þ Oðh4Þ; ð64Þ

where the first four terms of the above equation vanish (because of
consistency relations). Similar conclusion is obtained for the second
equation and therefore it is not repeated here. Also, note that the
accuracy is achieved for general arbitrary grids. The additional cost
of upgrading the second-order scheme to the fourth-order RD
scheme is only due to the evaluation of the second-order accurate
first derivative of the source terms. The general second-order accu-
rate first derivative formulation for arbitrary grids is provided in
Section 3.1.

5.3. Sixth-order RD scheme with generalized trapezoidal rule

In this section, we present a new sixth-order RD scheme with
relatively similar cost to our newly introduced third-order RD
schemes. Specifically, we show that there exists a unique fifth-
order RD scheme with the generalized trapezoidal rule, and that
mathematically becomes sixth-order RD scheme. Seeking fifth-
order accuracy from the fourth-order RD scheme given in Eq.
(58), we find an additional constraint:

A. Mazaheri, H. Nishikawa / Computers & Fluids 102 (2014) 131–147 137



CR
1

3
hR þ CR

2 ¼ �
h2

R

20
: ð65Þ

Then, the number of constraints (four) matches the number of
unknown coefficients (four). In this case, therefore, there exists a
unique solution:

CL
1 ¼ þ

hR

5
; CL

2 ¼ þ
h2

R

60
; CR

1 ¼ �
hR

5
; CR

2 ¼ þ
h2

R

60
: ð66Þ

Interestingly, the above unique coefficients satisfy the following
constraint as well, which is the requirement for sixth-order
accuracy:

CR
1

4
hR þ CR

2 ¼ �
h2

R

30
: ð67Þ

Thus, we have developed a sixth-order RD scheme with the general-
ized trapezoidal rule. We remark that these coefficients, unlike the
ones proposed for the third-order and fourth-order schemes, are
unique. With the proposed constants for the sixth-order RD scheme,
the source term evaluations at the nodes i and iþ 1 become:

SL ¼ Si þ
hR

5
@xSi þ

h2
R

60
@xxSi; ð68Þ

SR ¼ Siþ1 �
hR

5
@xSiþ1 þ

h2
R

60
@xxSiþ1: ð69Þ

Note that it requires only the first and second derivatives of the
source term, and no higher-order derivatives are required.

Similar to the process explained for the fourth-order scheme,
we prove the order of accuracy of the scheme using the above pro-
posed source discretization by first evaluating the cell residual of
the hyperbolic system. Consider the cell residual of, for example,

the first equation UC
u

� �
:

UC
u ¼ �aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ

hR

2
ðSL þ SRÞ;

¼ �aðuiþ1 � uiÞ þ mðpiþ1 � piÞ þ
hR

2
ðSiþ1 þ SiÞ

� h2
R

10
ð@xSiþ1 � @xSiÞ þ

h3
R

120
ð@xxSiþ1 þ @xxSiÞ: ð70Þ

Expanding the cell residual around the node i, we obtain the trun-
cation error of the first equation (after some algebra) as

T:E:ð@suiÞ ¼ ð�a@xui þ m@xpi þ SiÞ

þ hR

2
�a@xxui þ m@xxpi þ @xSið Þ

þ h2
R

6
�a@xxxui þ m@xxxpi þ @xxSið Þ

þ h3
R

24
�a@ð4Þx ui þ m@ð4Þx pi þ @xxxSi

� �
þ h4

R

120
�a@ð5Þx ui þ m@ð5Þx pi þ @ð4Þx Si

� �
þ h5

R

720
�a@ð6Þx ui þ m@ð6Þx pi þ @ð5Þx Si

� �
þ h6

R

5040
�a@ð7Þx ui þ m@ð7Þx pi þ

21
20

@ð6Þx Si

� 	
þ Oðh7Þ

¼ 0þ Oðh6Þ: ð71Þ

A similar result is obtained for the second equation, and is thus
omitted here, for brevity. The above truncation error analysis
reveals that this powerful sixth-order RD scheme could, in practice,
produce almost seventh-order accurate results, if the sixth deriva-
tive of the source term becomes small; the sixth-order term is only
due to the presence of ðh6

R=100800Þ@ð6Þx Si in the last term of Eq. (71).
We will show such interesting results in the following section.

We emphasize that the sixth-order RD scheme, similar to the
third-order RD scheme, requires the evaluation of the first and sec-
ond derivatives of the source terms. However, these derivatives are
now required to be evaluated with higher-order accuracy. For this
sixth-order RD scheme, we need third-order and second-order
accurate evaluations of the first and the second derivatives of the
source terms, respectively, which can be obtained by a cubic fit.
This makes the developed sixth-order scheme slightly more expen-
sive than the third-order scheme. Nevertheless, the proposed
sixth-order scheme is exceptionally simple and affordable.

6. Results

In this section we present the results in three categories: (1)
steady advection–diffusion equation for high Reynolds (or Peclet)
number applications, (2) unsteady linear advection–diffusion,
and (3) unsteady nonlinear advection–diffusion problems. We
obtain the results with all the proposed RD schemes and compare
them with the second-order RD scheme. The order of accuracy
results are also compared and presented for each example.

For all cases, we employ the Newton–GS solver as described in
Section 3. It is essentially Newton’s method for the second-order
scheme, but an approximate Newton method for higher-order
schemes because the Jacobian matrix derived from the second-
order scheme is used for all higher-order schemes. For unsteady
problems, the same solver is used to solve the implicit-residual
equations or equivalently to compute the pseudo steady solution
at every physical time step.

6.1. Steady linear advection–diffusion

Consider the advection–diffusion equation in x 2 ð0;1Þ with
uð0Þ ¼ 0 and uð1Þ ¼ 0:

@tuþ a@xu ¼ m@xxuþ sðxÞ; ð72Þ

where

sðxÞ ¼ mp2 sinðpxÞ þ ap cosðpxÞ: ð73Þ

The above problem has a fixed analytical solution of sinðpxÞ for any
advection and diffusion coefficients. We solved this problem using
the hyperbolic advection–diffusion method discussed in Section 2
with the proposed high-order RD schemes (see Fig. 5. Note that
we intentionally used a very coarse grid to show that the high-order
schemes could produce a much more accurate solution on such a
‘‘bad’’ grid.) We used ranges of nonuniform grids and solved the
problem with the Newton–GS method. For each Newton iteration,
the GS relaxation were conducted until three orders of magnitudes
reduction is achieved for the linear system. The computations were
continued until the residuals of both the solution u and the solution
gradient p were reduced by eight orders of magnitude. The conver-
gence results are shown in Table 2, where the convergence of the GS
relaxation is clearly OðNÞ and is independent of the order of accu-
racy of the RD scheme. Also, the solution was converged with the
same number of GS relaxations and Newton iterations regardless
of the RD scheme order. Note that the solutions were converged
with a very small number of Newton iterations, typically less than
ten; this is exceptionally remarkable for the approximate Jacobian
(second-order) formulation for higher-order schemes.

The accuracy of the proposed RD schemes were verified by com-
puting the L1 ¼

PN
i¼1 Uexact

i � Ui

 �

=N. These results are shown in
Fig. 6 for the third-, fourth-, and sixth-order hyperbolic RD
schemes (see also Tables 3–5). Note that when the differences
between the numerical results and exact values approach the
machine zero, the L1 slope approaches zeroth-order; these results
are thus omitted from the Table 5. The RD schemes developed with
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Fig. 5. Comparisons between the exact and the numerical results using the proposed high-order RD schemes for the steady linear advection–diffusion problem (Re ¼ 1) on a
nonuniform grid with N ¼ 10.

Table 2
Steady linear advection–diffusion problem, Re ¼ 1 (Convergence criteria: residuals < 10�8.)

Number of nodes RD scheme order GS relaxations/Newton iteration Newton iteration
High-order technique High-order technique

RD-D RD-GT RD-D RD-GT

50 3rd 168 169 10 10
4th 168 168 10 10
6th – 168 – 10

100 3rd 325 325 8 8
4th 325 325 8 8
6th – 325 – 8

200 3rd 670 670 7 7
4th 670 670 7 7
6th – 670 – 7

300 3rd 1015 1015 7 7
4th 1015 1015 7 7
6th – 1015 – 7

500 3rd 1703 1703 7 7
4th 1703 1703 7 7
6th – 1703 – 7

1000 6rd 3416 3416 7 7
4th 3416 3416 7 7
6th – 3416 – 7
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Fig. 6. L1 error of the proposed high-order RD hyperbolic schemes for the steady linear advection–diffusion problem.
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the divergence formulation are denoted by RD-D, while the
schemes developed with the generalized trapezoidal rule are
denoted with RD-GT. The results show that all the RD schemes
achieve the design order of accuracy for both the solution u and
the solution gradient p. It can be seen also that the difference
between the two versions of third-order RD schemes is minor,
and the same is true for the fourth-order RD schemes.

6.2. Steady boundary layer problem

Consider the advection–diffusion equation in x 2 ð0;1Þ with
uð0Þ ¼ 0 and uð1Þ ¼ 1:

@tuþ a@xu ¼ m@xxuþ sðxÞ; ð74Þ

where

sðxÞ ¼ p
Re
½a cosðpxÞ þ pm sinðpxÞ�; Re ¼ a=m: ð75Þ

This is a boundary layer problem with a non-trivial steady state
solution in the diffusion limit as a result of the source term addition
[2]. This equation develops a very narrow boundary layer near the
right boundary (x ¼ 1) when the advection term becomes domi-
nant. The exact steady state solution to this problem is given by
(see also Fig. 7).

uexactðxÞ ¼ e�Re � eðx�1ÞRe

e�Re � 1
þ 1

Re
sinðpxÞ: ð76Þ

We chose various Re values ranging from 1 to 106 and solved
the equation on nonuniform grid sizes up to 100,000 nodes. Like
the previous problem, the solutions were obtained with the
Newton-GS method. Within each Newton iteration, the GS relaxa-
tion were conducted until three orders of magnitude reduction is
achieved for the linear system, and the residuals of both the solu-
tion and the solution gradient were reduced by eight orders of
magnitude. The convergence data are given in Table 6 for the pro-
posed high-order RD schemes. The data are shown for the high-
order schemes developed with the generalized trapezoidal rule.
Similar results were obtained with the RD schemes developed with
the divergence formulation, and therefore not shown. But in gen-
eral, the high-order RD schemes with the generalized trapezoidal
rule perform better than the ones developed with the divergence
formulation. The latter third-order RD-D scheme not only produce
slightly larger errors as shown in Fig. 6, but also encounter some
convergence difficulties (particularly with time-dependent
problems); the convergence problem seems originated from the
lack of diagonal dominance caused by the particular structure of
the source term discretization as shown in Section 4.1. We will
therefore mainly focus on the RD-GT schemes for unsteady cases.
The OðNÞ linear dependency of the GS relaxations on the grid size
is also demonstrated, which is a consequence of solving the advec-
tion–diffusion equation as a hyperbolic system. We emphasize that
this is remarkable because the linear convergence is retained for
any irregular grid in any dimensions (N is approximately the
number of nodes in each coordinate direction in two and three

dimensions) as demonstrated in Refs. [1–3,6,4,5]. It leads to orders
of magnitude faster convergence in comparison with conventional
methods whose convergence is typically OðN2Þ as discussed also in
the previous paper [6]. Furthermore, the proposed high-order RD
schemes are extremely efficient as the solutions were obtained
with only a small number of Newton iterations: less than 10
iterations to reduce the residual by eight orders of magnitude.
Moreover, the number of GS relaxations and Newton iterations
are essentially independent of the scheme order. Considering the
fact that the cost of one GS relaxation is significantly cheaper than
one Newton iteration, we find that the developed high-order RD
schemes are extremely powerful and efficient. Finally, as in the
previous work [6], we remark that the high-Re cases required
extremely fine grids to meet the well-known requirement on the
mesh Reynolds-number [2]. If desired, the computations can be
performed on substantially coarser grids with more aggressive
and customized grid stretching. However, we simply refined the
grid to meet the mesh Reynolds-number requirement because
our method is powerful enough to solve the problem very
efficiently (i.e., less than 10 Newton iterations) even on such dense
grids for all third-, fourth-, and sixth-order schemes. The ability to
efficiently solve the problem on highly refined grids is a great
advantage of these schemes.

The order of accuracy of the proposed RD schemes were also
verified for this problem. Figs. 8 shows the L1 error convergence
results, where h is the representative mesh spacing defined by
h ¼ =ðN � 1Þ. For discussion purposes, we present the accuracy
plots for Re ¼ 1 and Re ¼ 10; similar results were obtained for
other Reynolds numbers. These results verify the order of accuracy
of the proposed high-order RD schemes (i.e., third-, fourth-, and
sixth-order) for all the variables and the gradients at all the grid
nodes including the boundary nodes (see also Tables 7–9). Note
that when the differences between the numerical results and exact
values approach the machine zero, the L1 slope approaches
zeroth-order; these data are omitted from the Tables 8 and 9.

6.3. Unsteady linear advection–diffusion

Consider the time-dependent advection–diffusion equation in
x 2 ð0;1Þ

Table 3
Spatial accuracy with the third-order RD-GT scheme for the steady linear advection–
diffusion problem (Re ¼ 1).

Number of nodes L1 error of u Order L1 error of p Order

10 9.54E�03 8.59E�02
25 4.63E�04 3.30 4.41E�03 3.24
50 4.85E�05 3.25 4.63E�04 3.25

100 5.46E�06 3.15 5.16E�05 3.17
200 6.46E�07 3.08 6.04E�06 3.09
300 1.88E�07 3.04 1.75E�06 3.05
500 3.99E�08 3.03 3.71E�07 3.04

1000 4.93E�09 3.02 4.57E�08 3.02

Table 4
Spatial accuracy with the fourth-order RD-D scheme for the steady linear advection–
diffusion problem, Re ¼ 1. (Note: fourth-order RD-D and RD-GT schemes produce
almost identical result.)

Number of nodes L1 error of u Order L1 error of p Order

10 8.38E�03 6.36E�02
25 2.84E�04 3.69 1.82E�03 3.88
50 1.74E�05 4.03 1.02E�04 4.16

100 1.04E�06 4.07 5.77E�06 4.15
200 6.23E�08 4.06 3.35E�07 4.11
300 1.21E�08 4.04 6.44E�08 4.07
500 1.55E�09 4.02 8.15E�09 4.05

1000 9.30E�11 4.06 4.94E�10 4.04

Table 5
Spatial accuracy with the sixth-order RD-GT scheme for the steady linear advection–
diffusion problem (Re ¼ 1).

Number of nodes L1 error of u Order L1 error of p Order

10 2.60E�03 1.75E�02
25 3.34E�05 4.75 1.98E�04 4.89
50 4.87E�07 6.10 2.87E�06 6.11

100 4.32E�09 6.82 2.65E�08 6.76
200 3.09E�11 7.13 1.78E�10 7.22
300 5.80E�12 – 3.39E�11 –
500 3.60E�12 – 1.97E�11 –
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@tuþ a@xu ¼ m@xxu: ð77Þ

The above equation with the following initial condition:

uðx; t ¼ 0Þ ¼ sinðjxÞ; ð78Þ

where j is an arbitrary constant, has the following exact solution
with a periodic boundary condition:

uexactðx; tÞ ¼ e�j2mt sinðjðx� atÞÞ: ð79Þ

A non-periodic solution also exists for the following oscillatory
boundary conditions

uð0; tÞ ¼0; ð80Þ
uð1; tÞ ¼U cosðxtÞ; ð81Þ

where U is the amplitude of the oscillation and x is the frequency of
the oscillation on the right boundary. The exact solution is given by

uexactðx; tÞ ¼ Real
ek1x � ek2x

ek1 � ek2
Ueixt

� 	
; k1;2 ¼

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4ixm
p

2m
;

ð82Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

.
We solved the above two problems with the first-order hyper-

bolic advection–diffusions equation given as in Eq. (2) and (3).
For each physical time, we reduced the residuals by two orders
of magnitude before advancing in time. During each time step,
we also relaxed the linear system using GS relaxations until two
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Fig. 7. Comparisons between the exact and the numerical results using the proposed high-order RD schemes for the steady boundary layer problem (Re ¼ 10) on a
nonuniform grid with N ¼ 10.

Table 6
Steady boundary layer problem (Convergence criteria: Residuals < 10�8.)

log10Re Number of
nodes

RD-GT
Scheme Order

GS relaxations/
Newton iteration

Newton
iteration

0 50 3rd 163 8
4th 163 8
6th

0 100 3rd 324 7
4th 324 7
6th

0 500 3rd 1647 7
4th 1647 7
6th

1 100 3rd 178 7
4th 178 7
6th

2 100 3rd 44 7
4th 44 7
6th

3 500 3rd 42 8
4th 43 7
6th

4 1000 3rd 18 9
4th 19 7
6th

5 10,000 3rd 24 9
4th 21 7
6th

6 100,000 3rd 18 9
4th 19 7
6th
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Fig. 8. L1 error of the proposed high-order RD hyperbolic schemes for the boundary layer problem on nonuniform grids.
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orders of magnitude reduction in the linear system residuals was
achieved (see Figs. 9 and 10.) We also note that more residual
reduction in pseudo time may be necessary on more complex
problems but two orders of magnitude reduction in the residuals
were sufficient for the problems presented here.

We examined the convergence rate of these problems on sev-
eral uniform and nonuniform grid systems. Given in Tables 10
and 11 are the average numbers of GS relaxations per Newton iter-
ation obtained over 100 time steps for the periodic and the oscilla-
tory boundary condition problems, respectively. Clearly the
convergence rate of the GS relaxation is of OðNÞ, not OðN2Þ as typ-
ical for numerical methods for the advection–diffusion equation.
Observe that for most grid systems only two Newton iterations
were sufficient to obtain accurate solutions regardless of the
scheme order. We also note that we used Dt ¼ 0:01 for all the grid
systems. The maximum grid spacing used is about 0.04. The corre-
sponding CFL value is then about 6.5 (based on Dt ¼ 0:01), which is
significantly smaller that the maximum-allowable CFL values
obtained with the Fourier analysis for all the BDF methods (see
Appendix A). Note that the maximum-allowable CFL value
increases with grid refinement. The time step is orders-of-magni-
tude larger than that required for conventional explicit schemes,
which is limited by Oðh2Þ. Of course, conventional implicit schemes
also allow unconditionally large time steps, but it requires OðN2Þ
convergence in an iterative linear solver and potentially a much
larger number of outer iterations as well if the exact linearization
is not possible and Newton’s method cannot be constructed.
Hence, the method developed here has two major advantages over
conventional methods: the second order Jacobian formulation and
OðNÞ iterative convergence in the linear solver. The latter advan-
tage can be potentially huge with increase of the grid system as
the speed-up factor is OðNÞ and thus grows for finer grids. Note also
that the second-order Jacobian formulation is the advantage of the
RD scheme over finite volume schemes where the compact
Jacobian formulation is only first-order. The results also show that

the convergence rate is the same for all the developed high-order
RD schemes. It means that the only cost to these higher order
schemes is the evaluation of the first and the second derivatives
of the source terms and in the case of the fourth-order scheme with
the generalized trapezoidal rule, the second derivatives are not
required.

We verified the order of accuracy of the proposed schemes on
time-dependent linear problems with consistent space-time dis-
cretization; i.e., third-order with BDF3, fourth-order with BDF4,
and sixth-order with BDF6. The same spatial order of accuracy
can be observed with the A-Stable BDF2 with small enough time
steps such that the temporal error is comparable to the spatial
error (i.e., Dt2 	 hm, where m is the scheme order). But the
consistent pair of BDF and spatial discretization allows about two
orders of magnitude reduction in the number of time steps for
the finest grid cases. Note that time-accurate computations are
started by BDF1 in the first time step with extremely small time
step (e.g. Dt ¼ 10�8), and then by higher order BDFs thereafter with
much larger time steps (e.g. Dt ¼ 0:01). This will ensure the order
of accuracy of the developed higher order schemes through all
times. We remark that explicit time stepping is not available for
time-accurate computations with the hyperbolic system method
(see Ref. [6] for more details).

Fig. 11 shows the L1 error convergence for the above time-
dependent linear problem with the oscillatory boundary condition
(see also Tables 12–14), where clearly the order of accuracy of the
proposed schemes are verified for the linear time-dependent
problems. The results were obtained at t ¼ 1:0. We used the same
Dt among the third-, fourth- and sixth-order schemes and were
able to obtain the desired order of accuracy. (Note that we showed
the RD schemes that were developed with the generalized
trapezoidal rule as these are more efficient and less expensive than
the ones developed with divergence formulation of the source
terms.)

6.4. Unsteady nonlinear advection–diffusion

Consider the unsteady nonlinear viscous Burgers equation with
an unsteady time-dependent source term:

@tuþ @xf ¼ @x muxð Þ þ Sðx; tÞ; x 2 ð0;1Þ; ð83Þ

where f ¼ u2=2; m ¼ u, and

Sðx; tÞ ¼ @tue þ 1
2
@xðueÞ2 � @xðuepeÞ; ð84Þ

where pe ¼ @xue. The source term has been generated by the follow-
ing function:

ueðx; tÞ ¼ Real
sinh x

ffiffiffiffiffiffiffiffiffiffiffi
ix=m

p� �
sinh

ffiffiffiffiffiffiffiffiffiffiffi
ix=m

p� � Ueixt

0@ 1Aþ C; C > 1; ð85Þ

so that it is the exact solution to Eq. (83) with the boundary
conditions defined as

Table 7
Spatial accuracy with the third-order RD-GT scheme for the boundary layer problem
with Re ¼ 1:0.

Number of nodes L1 error of u Order L1 error of p Order

10 9.65E�03 8.68E�02
25 4.70E�04 3.30 4.47E�03 3.24
50 4.94E�05 3.25 4.70E�04 3.25

100 5.56E�06 3.15 5.26E�05 3.16
200 6.58E�07 3.08 6.16E�06 3.09
300 1.91E�07 3.06 1.79E�06 3.05
500 4.07E�08 3.03 3.79E�07 3.04

1000 5.04E�09 3.01 4.66E�08 3.02
2000 6.34E�10 2.99 5.79E�09 3.01
5000 4.89E�11 2.80 3.68E�10 3.00

Table 8
Spatial accuracy with the fourth-order RD-GT schemes for the boundary layer
problem with Re ¼ 1:0. Note that when the differences between the numerical results
and exact values approach the machine zero, the L1 slope approaches zeroth-order.

Number of nodes L1 error of u Order L1 error of p Order

10 8.48E�03 6.43E�02
25 2.88E�04 3.69 1.84E�03 3.88
50 1.78E�05 4.02 1.04E�04 4.14

100 1.06E�06 4.07 5.87E�06 4.15
200 6.41E�08 4.05 3.42E�07 4.10
300 1.25E�08 4.04 6.57E�08 4.07
500 1.61E�09 4.01 4.35E�09 4.05

1000 1.06E�10 3.92 4.98E�10 4.06
2000 1.42E�11 – 1.42E�11 –
5000 9.69E�12 – 4.75E�11 –

Table 9
Spatial accuracy with the sixth-order RD-GT scheme for the boundary layer problem
with Re ¼ 10.

Number of nodes L1 error of u Order L1 error of p Order

10 4.81E�02 5.54E�01
25 6.89E�05 4.75 6.19E�04 4.89
50 4.54E�07 6.11 3.76E�06 6.11

100 3.97E�09 6.78 3.21E�08 6.73
200 3.56E�11 7.59 4.28E�10 7.37
300 1.14E�11 – 1.40E�10 –
500 9.23E�12 – 1.19E�10 –
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Fig. 9. Time-dependent linear advection–diffusion problem (Re ¼ 33:33) with periodic boundary condition on N ¼ 10 uniform nodes (Dt ¼ 0:01.)
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Fig. 10. Time-dependent linear advection–diffusion problem with oscillatory boundary condition (x ¼ 7p=2; j ¼ 2p; U ¼ 1; m ¼ 1) on N ¼ 10 uniform nodes (Dt ¼ 0:01.)

Table 10
Unsteady linear advection–diffusion problem with periodic BC (a ¼ 1; m ¼ 0:03) on
uniform grids. Average data over 100 time steps are given (convergence criteria:
residuals < 10�2).

Number of
nodes

RD-GT scheme
order

GS relaxations/Newton
iteration

Newton
iteration

25 3rd 5 4
4th 5 4
6th 6 5

100 3rd 24 2
4th 24 2
6th 24 2

300 3rd 33 2
4th 35 2
6th 35 2

500 3rd 55 2
4th 55 2
6th 55 2

1000 3rd 116 2
4th 116 2
6th 116 2

Table 11
Unsteady linear advection–diffusion problem with oscillatory BC (x ¼ 7p=2; a ¼ 1.)
on nonuniform grids. Average data over 100 time steps are given (convergence
criteria: residuals < 10�2).

Number of
nodes

RD-GT scheme
order

GS relaxations/Newton
iteration

Newton
iteration

25 3rd 35 4
4th 37 4
6th 45 4

50 3rd 69 4
4th 72 4
6th 72 4

100 3rd 136 4
4th 142 4
6th 142 4

500 3rd 650 4
4th 680 4
6th 680 4

1000 3rd 1283 4
4th 1332 4
6th 1332 4
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uð0; tÞ ¼C; ð86Þ
uð1; tÞ ¼C þ U cosðxtÞ; ð87Þ

where x is the frequency of the oscillation on the right boundary,
and U is the amplitude of the oscillation. We note that the constant
C must be greater than 1 in order for the diffusion coefficient to be
positive. We solved this time-dependent nonlinear advection–
diffusion equation with the following equivalent first-order
hyperbolic system (see Ref. [6] for more details):

@suþ @x u2
 �
¼ @xp� @tuþ Sðx; tÞ; ð88Þ

Tr

m
@sp ¼ ð@xu� p=mÞ: ð89Þ

For this nonlinear unsteady problem, the manufactured source term
contains terms that are already in the divergence form; i.e. the
residual evaluation of these terms are exact. The @tue term is the
only term in the manufactured source term with a non-exact resid-
ual evaluation. The BDF discretization of the @tu term in Eq. (88) will
not be in the divergence form and therefore will not have an exact
residual evaluation. In addition, the second equation has a
nonlinear source term, p=m (note that here m ¼ u). We obtained
the high-order results by evaluating all of these non-exact residuals
using the proposed techniques. Newton iterations are taken to be
converged when the overall residuals are dropped by eight orders
of magnitude. For each Newton iteration, we relaxed the linear sys-
tem until the residuals are reduced by two orders of magnitude.

The OðNÞ convergence rate of the GS relaxations was once again
achieved for the time-dependent nonlinear hyperbolic advection–
diffusion system. This is given in Table 15, where the average
number of iterations were obtained over 1000 time steps (over
17 periods). Note also that the high-order RD schemes converged
with only ten Newton iterations with the compact second-order
Jacobian formulation. It is remarkable that such a rapid conver-
gence is achieved for all high-order schemes with the second-order
Jacobian.

Shown in Fig. 12 are the order of accuracy plots obtained for this
unsteady advection–diffusion problem on series of nonuniform
grids (see also Tables 16–18). The results confirm the high-order
accuracy of developed RD schemes for unsteady nonlinear prob-
lems on nonuniform grids. We also observe that our proposed
sixth-order RD scheme, as discussed in the previous section, have
in fact produced seventh-order accurate results demonstrating its
power characteristics in efficiently providing very high accurate
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Fig. 11. Spatial accuracy of the proposed high-order RD-GT hyperbolic schemes for the time-dependent linear problem with oscillatory BC on uniform grids.

Table 12
Spatial accuracy for the linear time dependent problem with oscillatory BC
(x ¼ 7p=2; a ¼ 1.) using the third-order RD-GT scheme with the BDF3 time
discretization.

Number of nodes Dt (BDF3) L1 error of u Order L1 error of p Order

10 2.50E�03 1.40E�04 2.86E�04
20 2.50E�03 9.06E�06 3.95 1.90E�05 3.91
50 1.25E�03 3.54E�07 3.54 7.38E�07 3.54

100 5.00E�04 2.57E�08 3.78 4.71E�08 3.97
200 2.50E�04 2.59E�09 3.31 4.40E�09 3.42

Table 13
Spatial accuracy for the linear time dependent problem with oscillatory BC
(x ¼ 7p=2; a ¼ 1.) using the fourth-order RD-GT scheme with the BDF4 time
discretization.

Number of nodes Dt (BDF4) L1 error of u Order L1 error of p Order

10 2.50E�03 1.32E�04 2.83E�04
20 2.50E�03 7.22E�06 4.19 1.63E�05 4.12
50 1.25E�03 1.70E�07 4.09 4.01E�07 4.04

100 5.00E�04 1.04E�08 4.03 2.51E�08 4.00
200 2.50E�04 6.78E�10 3.94 1.64E�09 3.94

Table 14
Spatial accuracy for the linear time dependent problem with oscillatory BC
(x ¼ 7p=2; a ¼ 1.) using the sixth-order RD-GT scheme with the BDF6 time
discretization.

Number of nodes Dt (BDF6) L1 error of u Order L1 error of p Order

10 2.50E�03 3.77E�06 2.29E�05
20 2.50E�03 7.19E�08 5.71 3.27E�07 6.13
50 1.25E�03 5.81E�09 6.20 3.70E�08 5.37

100 5.00E�04 3.62E�10 5.43 1.34E�09 6.50

Table 15
Unsteady nonlinear advection–diffusion problem (m ¼ a ¼ u) with oscillatory BC
(U ¼ 1;C ¼ 2;x ¼ 7p=2) on nonuniform grids. Average data over 1000 time steps are
given (convergence criteria: GS relaxation < 10�2; Newton residuals < 10�8).

Number of
nodes

RD-GT scheme
order

GS relaxations/Newton
iteration

Newton
iteration

50 3rd 435 10
4th 430 10
6th 431 10

100 3rd 879 10
4th 868 10
6th 864 10

200 3rd 1772 10
4th 1749 10
6th 1737 10
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solutions and gradients (see Table 18 for more details). We note,
however, that the seventh-order accuracy is not a general
feature of the sixth-order scheme. Although it is not clear from
the exact solution, it could be due to the sixth-order derivative of
the source term in the leading truncation error being vanishingly
small. We also note that the CFL, corresponding to the largest grid
spacing of about 0.04 used in this study, is about 30 for the
Dt ¼ 0:00125. This value is still within the range of the stability
of all the BDF methods (see Appendix A for more details.) Note
again that the maximum-allowable CFL increases with grid
refinement.

7. Conclusions

In this paper, we have developed a series of efficient high-order
Residual-Distribution (RD) schemes for general advection–diffu-
sion problems. Third- and fourth-order RD schemes were
developed with the divergence formulation of the source term.
These schemes are very economical as they require only the
evaluation of the first and second derivatives of the source term,
and not of the solution. The first and second derivatives need to
be second and first order accurate, respectively, on arbitrary grids,
and they are obtained by a compact quadratic fit. Third-, fourth-,
and sixth-order RD schemes are also developed with a generalized
trapezoidal rule. The third-order schemes require the evaluation of
the first and second derivatives of the source term, which must be
second and first order accurate, respectively. On the other hand,
the fourth-order scheme requires only the second-order accurate
gradients, and therefore is the least expensive scheme among all
the developed high-order schemes in this paper. All third- and
fourth-order schemes are constructed within a five-point stencil
in the interior, a four-point stencil at the nodes adjacent to the
boundary, and a three-point stencil at the boundary nodes. For
the sixth-order scheme, the evaluation of the first and second
derivatives of the source term is required, and they must be third-
and second-order accurate, which is achieved by a cubic fit. It
results in the stencil extension by one or two nodes in the nodal
residual. In addition, the analysis of the proposed sixth-order RD
scheme as well as the results presented here show that this
high-order RD scheme can, in some cases, produce seventh-order
results on nonuniform grids. An implicit steady solver is
constructed based on the Jacobian derived from the compact sec-
ond-order RD scheme. It is demonstrated that the solver achieves
a rapid convergence like Newton’s method for all high-order
schemes despite the fact that the Jacobian is not exact. Specifically,
it requires only a small number of Newton iterations, typically less
than 10, for both steady and unsteady problems, even for highly
refined grids, up to 100,000 nodes. We have demonstrated also
that all of these high-order schemes are capable of producing both
high-order accurate solution and gradient on nonuniform grids
very efficiently by less than ten Newton iterations.

The study presented in this paper should be of interest to
researchers working on finite-volume schemes because the RD
scheme is known to be equivalent to the finite-volume scheme in
one dimension (see for example Ref. [24]). Specifically, a second-
order upwind RD scheme is equivalent to the first-order finite-vol-
ume scheme with a special form of source term discretization [2].
It implies that the developed high-order RD schemes may also be
implemented in the form of first-order finite-volume schemes with
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Fig. 12. Spatial accuracy of the proposed high-order RD-GT hyperbolic schemes for the time-dependent nonlinear problem (m ¼ a ¼ u) with oscillatory BC
(U ¼ 1; C ¼ 2; x ¼ 7p=2) on nonuniform grids.

Table 16
Spatial accuracy for the time-dependent nonlinear problem (m ¼ a ¼ u) with oscilla-
tory BC (U ¼ 1; C ¼ 2; x ¼ 7p=2) using the third-order RD-GT scheme and BDF3
time discretization on nonuniform grids.

Number of nodes Dt (BDF3) L1 error of u Order L1 error of p Order

25 1.25E�03 6.83E�05 3.59E�04
50 1.25E�03 3.68E�06 4.21 1.79E�05 4.33

100 1.00E�03 2.33E�07 3.98 1.12E�06 4.00
200 5.00E�04 1.70E�08 3.78 8.23E�08 3.77
500 2.50E�04 9.58E�10 3.14 5.03E�09 3.05

Table 17
Spatial accuracy for the time-dependent nonlinear problem (m ¼ a ¼ u) with oscilla-
tory BC (U ¼ 1; C ¼ 2; x ¼ 7p=2) using the fourth-order RD schemes and BDF4 time
discretization on nonuniform grids.

Number of nodes Dt (BDF4) L1 error of u Order L1 error of p Order

25 1.25E�03 6.75E�05 3.49E�04
50 1.25E�03 6.21E�07 4.27 2.71E�06 4.23

100 1.00E�03 1.85E�07 4.24 7.68E�07 4.40
200 1.00E�03 1.07E�08 4.11 3.69E�08 4.38
500 5.00E�04 3.14E�10 3.85 6.33E�10 4.44

Table 18
Spatial accuracy for the time-dependent nonlinear problem (m ¼ a ¼ u) with oscilla-
tory BC (U ¼ 1; C ¼ 2; x ¼ 7p=2) using the sixth-order RD-GT scheme and BDF6
time discretization on nonuniform grids.

Number of nodes Dt (BDF6) L1 error of u Order L1 error of p Order

50 1.25E�03 7.99E�08 5.61E�08
75 5.00E�04 5.42E�09 6.60 3.69E�09 6.71

100 5.00E�04 7.54E�10 6.85 5.09E�09 6.91
200 5.00E�04 4.30E�11 7.06 2.83E�09 7.11
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special source term discretization formulas. The resulting finite-
volume schemes will be different from many other finite-volume
schemes in that they do not require computations of solution
gradients.

The developed high-order schemes could well bring significant
improvements to the numerical methods for practical problems
such as material thermal response calculations of thermal
protection systems of atmospheric entry vehicles [17–19], and
the experimental aeroheating data reduction [20,21], which are
based on one-dimensional analyses and routinely used in
industries (e.g. NASA). A particularly useful scheme would be the
fourth-order scheme based on the generalized trapezoidal rule
(RD-GT) because it requires only the second-order accurate
gradients of the source term. Application to these practical
problems should be undertaken and is left as future work.

Extensions to higher dimensions are highly desired. To extend
the developed high-order schemes to higher dimensions, it is
necessary to employ a high-order quadrature formula for integrat-
ing the flux divergence term, which has been integrated exactly in
one dimension but cannot be integrated exactly in higher
dimensions. For the source term discretization, the divergence
formulation can be extended relatively straightforwardly while a
discretization formula such as the generalized trapezoidal rule
remains to be found. In particular, a third-order version is expected
to be practical in multi-dimensions: a high-order quadrature for-
mula with added edge-midpoints along with a quadratic fit for
first-derivatives. The solution at the midpoint can be obtained by
the Hermite interpolation along each edge, and thus does not need
to be stored [12]. As a result, the number of degrees of freedom
remains the same as the second-order scheme. It is expected to
be a very efficient scheme compared with other high-order meth-
ods such as Discontinuous Galerkin or Spectral Volume methods.

Finally, extensions to more complex nonlinear equations such
as the Navier–Stokes equations remain as a challenge. For the com-
pressible Navier–Stokes equations, the complete eigen-structure of
the whole system has yet to be found. The construction of the
upwind RD scheme based on a single hyperbolic system, as pre-
sented in this paper, is a challenge. To overcome the difficulty, a
simplified approach has been proposed and demonstrated for a
finite-volume scheme in Ref. [3], which is based on the indepen-
dent treatment of the inviscid and viscous terms. A similar
approach may become necessary for the RD schemes.
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Appendix A. BDF stability analysis on the proposed high order
RD schemes

Consider a Fourier mode of non dimensional wave number
b 2 ½0;p� on a uniform mesh of spacing h:

Ub ¼ U0ðtÞeibðx�xjÞ=h; ðA:1Þ

where Ub ¼ ðub;pbÞ and U0ðtÞ ¼ ðu0ðtÞ;p0ðtÞÞ. Applying this Fourier
mode to the discretized first order hyperbolic system, we arrive at:

Nb dU0

dt
¼ MbU0; ðA:2Þ

where Mb and Nb are, respectively, the spatial operators for the
spatial and temporal terms of the system. Note that the spatial
operator arises from the temporal term because the physical time
derivative is discretized in space and distributed to the nodes in
our schemes. The matrix Nb may be called the mass matrix.

The spatial operator Mb is defined as:

Mb ¼ 1
h

BþJUL þ B�JUR


 �
; ðA:3Þ

where

JUL ¼
�aðeib � 1Þ mðeib � 1Þ
ðeib � 1Þ=Tr Sb

UL

" #
;

JUR ¼
�að1� e�ibÞ mð1� e�ibÞ
ð1� e�ibÞ=Tr Sb

UR

" #
:

ðA:4Þ

The Sb is associated with the source term and therefore depends on
the proposed source term discretization. For discussion purposes,
here we only consider high order RD-GT schemes and the
corresponding source terms become:

Sb
UR ¼

h
2Tr

eib þ 1þ AR þ BR : 3rd-order
eib þ 1þ AR : 4th-order
eib þ 1þ CR þ DR : 6th-order

8><>: ðA:5Þ

Sb

UL ¼
h

2Tr

e�ib þ 1þ AL þ BL : 3rd-order
e�ib þ 1þ AL : 4th-order
e�ib þ 1þ CL þ DL : 6th-order

8><>: ðA:6Þ

where,

AR ¼ ðeib � e�ib � e2ib þ 1Þ=12 ðA:7Þ
BR ¼ ð�eib þ e�ib � e2ib � 3Þ=1000 ðA:8Þ
CR ¼ ð�e�2ib þ 3e�ib � 2eib þ 3e2ib � e3ib � 2Þ=12 ðA:9Þ
DR ¼ ð�eib þ e�ib þ e2ib � 1Þ=60 ðA:10Þ
AL ¼ ð�eib þ e�ib � e�2ib � 1Þ=10 ðA:11Þ
BL ¼ ð�eib � 3e�ib þ e�2ib � 3Þ=1000 ðA:12Þ
CL ¼ ð4e�2ib � 2e�ib þ 3eib � e2ib � e�3ib � 2Þ=12 ðA:13Þ
DL ¼ ðeib � e�ib þ e�2ib þ 1Þ=60 ðA:14Þ

The mass matrix Nb is defined as:

Nb ¼ 1
h

BþJt
UL þ B�Jt

UR


 �
; ðA:15Þ

where

Jt
UL ¼ Tr

Sb

UL 0
0 0

" #
; Jt

UR ¼ Tr
Sb

UR 0
0 0

" #
: ðA:16Þ

Note that only the variable u evolves with the BDF. Thus, we can
eliminate the p0 by solving the second equation in the system
(A.2) and substituting it back to the first equation and arrive at:

BDFðu0Þ ¼ kbu0; ðA:17Þ

where BDFðu0Þ denotes the time discretization of du0=dt by the BDF,
and

kb ¼
Mb
ð1;1Þ �Mb

ð1;2ÞM
b
ð2;1Þ=Mb

ð2;2Þ

Nb
ð1;1Þ �Mb

ð1;2ÞN
b
ð2;1Þ=Mb

ð2;2Þ
: ðA:18Þ

With the physical time step defined as Dt ¼ CFLh=ðaþ m=hÞ, the
quantity relevant to the stability kbDt can be shown to depend only
on two parameters: ReLr ¼ aLr=m and the mesh-Reynolds-number
Reh ¼ ah=m. The former is essentially equivalent to the global
Reynolds number, Re ¼ a=m since Lr ¼ Oð1Þ (see [6] for details); it
plays a role of properly weighting the upwind advection and the
upwind diffusion schemes [2].

We now numerically perform stability analysis for BDF3,
BDF4, and BDF6 and estimate the maximum-allowable CFL
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(¼ Dtðaþ m=hÞ=h) values for different mesh sizes and Re ¼ a=m
numbers. Shown in Fig. A.13 are the stability regions and
maximum CFL values graphically illustrated corresponding to the
proposed time-dependent high-order RD-GT schemes. Table A.19
provides maximum CFL for ranges of Re and grid spacing for the
high order schemes. Observe that the maximum-allowable CFL
number varies significantly with Re on a given mesh, but it is
essentially the same for the same Reh. Note that Reh < 2 is required
to avoid numerical oscillations [2], and the maximum-allowable
CFL number in this range is large enough to perform practical
computations.
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Fig. A.13. Maximum-allowable CFL for the proposed high-order time-dependent RD schemes (h ¼ 0:1; Re ¼ 100). The stable region is bounded by a curve represented by the
red circles. The eigenvalues of the discretizaiton are plotted in blue and all contained in the stable region for the maximum CFL number.

Table A.19
Maximum-allowable CFL values for the proposed high-order unsteady RD hyperbolic advection–diffusion schemes.

Grid spacing Re ¼ 1 Re ¼ 100 Re ¼ 106

BDF3 BDF4 BDF6 BDF3 BDF4 BDF6 BDF3 BDF4 BDF6

0.1 1000 500 20 1.5 0.5 0.02
0.01 90,000 50,000 1800 25 10 0.35
0.001 1500 500 20 0.04 0.005 0.0002
0.0001 150,000 50,000 2000 0.15 0.05 0.002
0.00001 1.5 0.5 0.02
0.000001 25 10 0.3
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